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Abstract

The effects of anticoagulant EDTA and sodium heparin (SH) on stable carbon δ13C

and nitrogen δ15N isotopic values of red blood cells (RBC) and blood plasma in juve-

nile blacktip reef sharks Carcharhinus melanopterus were analysed. Plasma preserved

with anticoagulants was not isotopically distinct from plasma stored in no-additive

control tubes but RBC δ15N values exhibited small enrichments when preserved with

EDTA and SH. Results suggest EDTA and SH are viable anticoagulants for stable iso-

topic analyses of blood fractions but further studies are advised to validate results.
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Investigating the trophic ecology of marine predators, such as sharks

is crucial for understanding their ecological roles and importance

(Heithaus et al., 2008; Roff et al., 2016; Speed et al., 2012). Using nat-

urally occurring carbon and nitrogen stable isotopes as chemical

tracers provides the opportunity to examine the trophic ecology of

sharks and other taxa over various time scales (Matich, Ault, et al.,

2017). Stable isotope ratios of carbon 13C:12C (δ13C) and nitrogen

15 N:14 N (δ15N) can depict the food webs in which consumers are

foraging and their relative trophic position (Hobson, 1999), respec-

tively. Stable-isotope analysis (SIA) can also provide further insight

into ontogenetic shifts in trophic interactions, long and short-term

movements and individual foraging specialisations (Kiszka et al., 2015;

Matich et al., 2011; Matich, Kiszka, et al., 2017; Papastamatiou et al.,

2010; Speed et al., 2012), but interpretation of isotopic data must be

made cautiously (Thomson et al., 2018)

Depending on the study questions and species of interest, a vari-

ety of body tissues are used for SIA in sharks (Hussey et al., 2012).

Metabolically inert (e.g., bones, fin) or active (e.g., liver, muscle, blood)

tissues can be sampled independently, or in combination they allow

for the investigation of potential temporal dietary changes (Bearhop

et al., 2004; Matich et al., 2019; Matich & Heithaus, 2014). The use of

blood fractions, specifically red blood cells (RBC) and blood plasma,

has increased over recent years (Vander-Zanden et al., 2015). RBC

and plasma are especially useful to assess trophic positions and forag-

ing behaviours of juvenile sharks (Hussey et al., 2017; Kinney et al.,

2011; Matich et al., 2015; Matich, Kiszka, et al., 2017), because they

incorporate trophic interactions over different time scales and can be

collected non-lethally. RBC stable-isotope values reflect energy

sources (e.g., foraging and maternal provisions) over extended periods

(multiple months), while plasma stable-isotope values represent more

recent trophic interactions (weeks to months; McMeans et al., 2009;

Vaudo et al., 2010; Matich et al., 2019).

Despite the advantages of using blood for SIA, one of the major

limitations of its use is its rapid coagulation. To obtain accurate iso-

tope values for RBC and plasma, they need to be separated immedi-

ately but remote and logistically challenging field conditions may
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impede such rapid centrifugation. Therefore, alternative solutions that

prevent tissue degradation are needed. Blood preservatives, such as

anticoagulants, provide a potential solution. Anticoagulants inhibit the

coagulation process and extend the time before centrifugation is

needed. Common preservatives for blood collection and storage

include EDTA and sodium heparin (SH). EDTA prevents the coagula-

tion cascade through its binding ability of calcium and magnesium as a

chelator (Banfi et al., 2007; Rand et al., 1996) and SH stimulates the

production of antithrombin III to inactivate thrombin (Shuman &

Majerus, 1976).

In order to correctly interpret stable-isotope values in blood tis-

sues of young sharks, it is critical to know if blood anticoagulants bias

these values. Recent investigations in leopard sharks Triakis

semifasciata (Girard 1855) showed that RBC and plasma collected in

tubes coated with lithium heparin (an anticoagulant) were not isotopi-

cally distinct from blood collected in no-additive tubes (Kim & Koch,

2012). In contrast, studies on birds and sea turtles revealed that

stable-isotopic signatures are influenced by anticoagulants and the

magnitude and nature of shifts in isotopic values varied among taxa,

blood fractions and anticoagulants (Bugoni et al., 2008; Lemons et al.,

2012). Consequently, by investigating the effects of a different assort-

ment of anticoagulants on blood components in another species of

sharks, we aim to extend the currently limited knowledge of blood

preservative effects on isotopic values in shark blood. In this study,

we investigated whether EDTA and SH preservation modified δ13C

and δ15N values in RBC and plasma of blacktip reef sharks

Carcharhinus melanopterus (Quoy & Gaimard 1824).

Juvenile sharks were captured with gillnets (20.0 m × 1.5 m,

5.0 cm mesh) at St. Joseph Atoll, Republic of Seychelles (05� 26’ S,

53� 200 E) from November to December 2014. After the insertion of

PIT tags (Biomark; www.biomark.com) and total length measurements

(LT), blood was collected from the caudal vein using 5 ml syringes

(BD Plastipak; www.bd.com) with 18 gauge needles (BD PrecisionGlide).

Each 5 ml blood sample was split into three tubes: 2 ml in EDTA coated

tubes (BD), 2 ml in SH coated tubes (BD) and 1 ml in no-additive (con-

trol) tubes. To avoid coagulation, the latter sample was immediately

spun at 1500 g by a hand-powered centrifuge (Hettich; www.hettich.ch)

for 30 s and resulting blood components (RBC and plasma) were sepa-

rated and kept in no-additive tubes. Together with the EDTA and SH

treated samples, all tubes were kept on ice for a maximum duration

of 6 h.

At the laboratory, blood samples preserved in anticoagulants were

spun with a mini-centrifuge (Mini Fuge, STARLAB; www.stalabgroup.

com) at 2000 g for 1 min and then frozen with control samples at

−18�C. After 7 days, blood samples were placed in a drying oven (60�

C) for 72 h and homogenised with a mortar and pestle. Subsequently,

to determine the abundances of carbon (13C:12C) and nitrogen

(15N:14N), 500–800 μg of the homogenised powder was loaded into

tin capsules and analysed by a continuous-flow isotope-ratio mass

spectrometer (Finnigan Delta C EA-IRMS (with temperature conver-

sion element analyser; TC-EA), Thermo Fisher Scientific; www.ther-

mofisher.com) with bovine liver, International Atomic Energy

Authority (I-AEA)-N-1, I-AEA-C-6 and glycine used as standards. T
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Variation among laboratory standard for samples were 0.15‰ for

δ13C and < 0.10‰ for δ15N. Lipid extractions were not conducted,

because C:N for RBC (mean ± SD = 2.8 ± 0.08) and plasma (1.8

± 0.03) were below those recommended for extraction or mathemati-

cal correction (Hussey et al., 2012).

Where parametric assumptions were met (assessed with Shapiro–

Wilk tests), we used paired t-test to determine whether δ13C, δ15N

and C:N isotopic values from treated samples (EDTA and SH) were

statistically different from non-additive control samples. Where

assumptions were not met for δ13C, δ15N and C: N, we applied a

Wilcoxon signed rank test to compare differences between treated

and non-additive control samples. Also, power analyses were run for

comparisons. All the statistical analyses were performed in R (version

3.5.3; R Core Team 2017; www.r-project.org) within the RStudio

interface 1.0.153 (RStudio Team, 2016) and the level of statistical sig-

nificance α was set at 0.05.

Eleven juvenile C. melanopterus ranging in from 54.6–78.0 cm LT

(mean ± SD = 62.8 ± 7.7 cm LT) were collected (mean δ13C, δ15N and

C:N values in Table 1). For RBC, there was no significant difference in

δ13C values nor in C:N values between no-additive control and

treated samples. The difference in mean δ15N values for no-additive

control and EDTA and SH treated samples was small (0.0873‰ and
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F IGURE 1 Boxplots (( ), median; ( ), inter-quartile range; (), 95% range) of individual and mean differences in δ13C and δ15N values
between no-additive control and treated samples for all blood components in Carcharhinus melanopterus captured at St. Joseph Atoll, Seychelles.
( ), Zero difference between control and treated samples. Significant difference from control: *, P < 0.05; **, P < 0.001 (see Table 2 for details).

EDTA, ethylene diaminetetraaceitic acid; RBC, red blood cells; SH, sodium heparin. Tissue: ( ) Plasma, ( ) RBC

TABLE 2 Statistical results from paired analyses between control (no-additive) and blood components treated with EDTA or SH in
Carcharhinus melanopterus captured at St. Joseph Atoll, Seychelles

Test Tissue Parameter Mean difference n t-Test Two-tailed P-value Comments

Control v. EDTA RBC δ13C 0.1118 11 1.4347 > 0.05

δ15N 0.0873 11 2.6966 < 0.05*

C:N 0.0349 11 43 (v) > 0.05 Wilcoxon test

Plasma δ13C −0.0854 11 −0.6803 > 0.05

δ15N −0.5064 11 −1.8205 > 0.05

C:N 0.0305 11 1.0121 > 0.05

Control v. SH RBC δ13C 0.0445 11 1.1276 > 0.05

δ15N 0.2018 11 7.3136 < 0.001*

C:N 0.0369 11 1.0102 > 0.05

Plasma δ13C 0.2482 11 0.7918 > 0.05

δ15N 0.2164 11 1.007 > 0.05

C:N −0.0367 11 43 (v) > 0.05 Wilcoxon test

Abbreviations: EDTA, ethylenediamine tetraaceitic acid; n, sample size; RBC, red blood cells; SH, sodium heparin.

* denotes significant difference.
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0.2018‰, respectively), but significant (Figure 1 and Table 2). No-

additive plasma δ13C, δ15N, or C:N were not different from treated

plasma. Mean differences in δ13C and δ15N were considerably higher

in plasma than RBC, except for δ13C between control and EDTA

treated samples (mean difference − 0.0854‰; Table 2).

To our knowledge, the present study is the first characterisation

of the effects of EDTA and SH on stable-isotope values in RBC and

plasma in sharks. Our results revealed that RBC and plasma isotope

values were highly similar in no-additive control samples and samples

treated with anticoagulants. The only significant differences between

control and treated samples were found in RBC δ15N values treated

with either EDTA or SH. Despite statistical significance, differences

among treatments were small, particularly for EDTA (< 0.1 ‰;

Table 2), suggesting minimal effects of these anticoagulants on isoto-

pic values in blood components.

Overall, our study confirms and extends the findings provided by

Kim and Koch (2012), where blood components treated with lithium

heparin yielded accurate isotopic data for shark blood. This is a prom-

ising outcome for the increasing number of isotopic studies on blood

components (Vander-Zanden et al., 2015), but interpretation must be

made cautiously. Our limited sample size may have resulted in smaller

treatment effects and mean differences between control and treated

plasma samples showed high variability for both anticoagulants

(Figure 1 and Table 2). This observation is further supported by low

statistical power (0.2) and there remains a potential for type II error,

particularly for plasma samples. Further research should therefore aim

at larger sample sizes and potentially include multiple shark species in

order to validate if results are comparable and applicable for isotopic

studies on a wide range of sharks.
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